1
Filtering algorithm. This algorithm was designed to minimize the effect of potential contamination of the edge samples with normal mouse brain cells. Relative expression values for each gene from tumor core, tumor edge, and normal mouse brain samples were compared. Genes of interest were identified that met three criteria: a) low expression at tumor core; b) relatively increased expression at tumo
1
Of each cell colony over 24 hours was calculated. Data for each cell line was averaged over 10 wells and compared between parental, control transfected, and galectin-1 transfected cells. A t-test was applied to compare means.In vitro invasion assay6.8 pg +/- 4.2 pg. In spite of this variability, the quality of the RNA was consistently high with a mean RNA integrity number of 8.13 ?0.74. Expression
1
Rbance values of the other wells. Average corrected absorbance was compared between transfectant and parental cells, using a t-test.ECM attachment assaysThe U87MG human glioma cell line was kept in tissue culture in DMEM (Cellgro Mediatech, Inc.), with 10 fetal bovine serum, and penicillin/streptomycin. For transfection, 2.5x106 cells were plated overnight on a 100 mm round dish. Cells were trans
1
By the ample amount of normal mouse brain tissue available for dissection. In spite of species differences, cross-hybridization of mouse genetic material to human probes did prove to be a common occurrence. These data made it possible to control, rather stringently, for the potential contamination of tumor edge samples with mouse brain. Of course, there could still be possible contamination ?react
1
Ioblastoma in general. In conclusion, the orthotopic glioblastoma xenograft model recapitulates not only the invasive phenotype, but also the regional expression profile reported in human samples of glioblastoma multiforme. The value of the model (i.e., abundant tissue, high-quality RNA, andToussaint et al. Molecular Cancer 2012, 11:32 http://www.molecular-cancer.com/content/11/1/Page 10 ofFigure
1
Action of the tumor [22,36]. Indeed, abrogating galectin-1 expression renders tumor cells more susceptible to temozolamide treatment [22,41]. Finally, galectin-1 induces apoptosis of activated T-cells [42-46], prevents host animals from mounting tumor vaccine-induced immunity [47], and may cooperate with TGF-beta in GBM-induced immunosuppression [48,49]. In sum, galectin-1 expression may inversely
1
Galectin-1 transfectants. A population of GFP-sorted cells (the "Gal-1" bars in Figure 4A) was compared to its parental counterpart. The number of metabolically-active cells attached to fibronectin was no different between the two lines at eight hours. Changing the media at four hours reduced the number of cells left for labeling, but the effect was equal in both groups, suggesting a similar rate
1
Assays of GBM cells stably transfected to over-express galectin-1, perfectly fit in with the previous studies mentioned above and highlight the importance of galectin-1 in the biologically aggressive behavior of experimental GBMs. While there was no enhancement of proliferation or change inattachment to fibronectin, galectin-1 upregulation induced more rapid two-dimensional migration and enhanced